Fully discrete hyperbolic initial boundary value problems with nonzero initial data

نویسنده

  • Jean-François Coulombel
چکیده

The stability theory for hyperbolic initial boundary value problems relies most of the time on the Laplace transform with respect to the time variable. For technical reasons, this usually restricts the validity of stability estimates to the case of zero initial data. In this article, we consider the class of non-glancing finite difference approximations to the hyperbolic operator. We show that the maximal stability estimates that are known for zero initial data and nonzero boundary source term extend to the case of nonzero initial data in l. The main novelty of our approach is to cover finite difference schemes with an arbitrary number of time levels. As an easy corollary of our main trace estimate, we recover former stability results in the semigroup sense by Kreiss [Kre68] and Osher [Osh69b]. AMS classification: 65M12, 65M06, 35L50.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact Implementation of Multiple Initial Conditions in the DQ Solution of Higher-Order ODEs

The differential quadrature method (DQM) is one of the most elegant and useful approximate methods for solving initial and/or boundary value problems. It is easy to use and also straightforward to implement. However, the conventional DQM is well-known to have some difficulty in implementing multiple initial and/or boundary conditions at a given discrete point. To overcome this difficulty, this ...

متن کامل

Stability Theory of Difference Approximations for Multidimensional Initial-Boundary Value Problems

A stability theory is developed for dissipative difference approximations to multidimensional initial-boundary value problems. The original differential problem should be strictly hyperbolic and the difference problem consistent with the differential one. An algebra of pseudo-difference operators is built and later used to prove the stability of the difference approximation with variable coeffi...

متن کامل

Fully Discrete Energy Stable High Order Finite Difference Methods for Hyperbolic Problems in Deforming Domains: An Initial Investigation

A time-dependent coordinate transformation of a constant coefficient hyperbolic system of equations is considered. We use the energy method to derive well-posed boundary conditions for the continuous problem. Summation-by-Parts (SBP) operators together with a weak imposition of the boundary and initial conditions using Simultaneously Approximation Terms (SATs) guarantee energy-stability of the ...

متن کامل

Continuum and Discrete Initial-Boundary Value Problems and Einstein’s Field Equations

Many evolution problems in physics are described by partial differential equations on an infinite domain; therefore, one is interested in the solutions to such problems for a given initial dataset. A prominent example is the binary black-hole problem within Einstein's theory of gravitation, in which one computes the gravitational radiation emitted from the inspiral of the two black holes, merge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016